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UTILITY OF'T-HE BETA-MULTINOMIAL DISTRIBUTION

IN MULTIPLE CLA6SIFICAION'SCHEME

Abstract

The present study is an attempt to answer the'following research

question: Can the reliability of a 'cri'terion- referenced test be accurately

determined according to a multiple classification of the student's performance?

Specifically; this study pursues a sound statistical model, i.e., the beta-
.

multinomial model, which postulates the probability distribution of examinee's

degree of mastery on a criterion-referenced test. From this. model, procedure

for assessing the reliability of the testing instrument can then be developed.

Ideally and finally, several real-life data sets should have been diployed

ip order to justify empirically (or refine) this reliability estimation,

procedure. Results from this study thould and would solve some knotty

psychometric difficulties which are presently hindering the progress of the

criterion-referenced testing movement.

Background

Within the domain of criterion-referenced testing, various methodg

have existed in the literature wh,ich are intended to assess the reliability

of a test (Subkoviak; 1979). Among these procedure; Huynh's single-
.

administration approach has received much attention due to the elegance

of its model and tolerable bias associated with its estimates (Huynh, 1976;

Subkoviak, 1978). Subsequently, Huynh's procedure was well investigated

and simplified for classroom teachers or practitoners who might not have

access to a computer (Peng and Subkoviak, 1980).

The Beta-Binomial Model

Two'major assumptions underlie Huynh's procedure:

(I) A binomial density function is assumed for the distribution of scores
\

(x) for an examinee with true ability ' over repeated n-it m tests.

Therefore, n-x
( 12)1x

(1
.i)

/1),

1? is the proportion of items in the item population that an examinee

can correctly answer.



(II) A beta distribution for 1 is assu the pOpulation.

Under these assumptions, it can be shown

the probability distribution of x is a beta-bin

geometric) distribution with the following form:

f(x)=7(2)15(0(tXq, .n1-(6 X )./B (at, )
\4

where n= number of items. on a test and

B( , beta functi6n defined by the parameters in the parenthesis.

2

and Lord, 1962) that

(or negative hyper-

A bivariate beta-binomial distribution is determined similarly,

(42)(V).

33 (ci

Reliability Indices derived from the Beta-Binomial Model

Under the beta-binomial model, a criterion-referenced test is simply

a mastery test. A mastery test typically classifies an examinee into

one of the two categories: master or nonmaster, according to a predetermined

criterion or cutoff. Figure 1 below depicts this general decision-making

framework.
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'When two parallel forms X and Y exist , the probabilityof 'consistent

classification of pupils is composed of. two elements: the probability of

a nonmaster consistently identified by both forms and that of a master

.again by X and Y. Mathematitally,-thisTrobability can be expresSed as

P
Pconsistent classification

P00 P11.

This binary classification is equally imposed on individual items from

the perspective of-a beta-binomial model.' AlternatiVelx, -a 'standardized

kappa Coefficient can be used-also to suffice the purpose of quantifying

a reliability . This leads into the following definition

Kappa= % P
p
Chance.'

max(P). - P
charice,

= P- (P2o -1. Ps
2

)

1- (P
2

0
+. P

2
)

1

Statement of the Problem

Unfortunately, the Huynh's approach as well as the simplied procedure

assumes that an examinee either'masters or fails a test.. In order words,

these approaches are restricted to mastery tests only. It is ,however,

more realistic.to assume that 'a typical pupil is capable of mastering.

a portion, if not the entirety, of all the materials taught. Hence, a.

multiple classification scheme on items and tests seems "reasonable for

determining.a student's level of mastery on a criterion-referenced test.

This suggests the development of the beta-multinomial model, which is an-

expansion of thebeta-binomial model underlying the Huynh method.

The Beta-Multinomial Model

Three useful references are given by Cheng (1964, in modern Chinese),

Ishii and Hayakawa (1960. and Mosimann (1962). The original manuscripts

were publiShed in separateand yet,remote locations around the world; hence,

they singalled an alarmingmessage'for more headaches in days to come as

long as I remained interested in pursuing this line of research (Sigh!)

Two major assumptions .implied by the beta-multinomial model:
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(1) A mUltinomial dentity function is assumed for the conditional distri-

bution Of scores x (=x1 + wix
2
) for an examinee with'true ability

1,(.11-1-1.0:W over repeated N-items test.

(X=X +
1

X1: X2: (N4
1

-X )

'(c1)
x,

)).(2

(X=X1+wX2)< N

N-X
1
-X

2

where X1=# of items that an examinee can. completely master,

X2=# ofiltems that an examinee can partially master,,

w =partial credit awarded to items on which an examinee demonstrates partial'
mastery which equals a constant term in the equation,-

cl=the proportion of items in the item population that an examinee can
correctly answer; and

2=the proportion -of items in the item population that an.examinee can
partially answer.

(2) A multivariate beta distribution for & c2 is assumed across the

population' of examinees.

Under these, assumptions, it can be shown (Mos-mann, 1962) that

the probability distribution of.X is a compound beta-multinomial

I- fi tocri X2.-Hz-1

B(al , a 0 B(a2 ,a3 )Xi: X2! (N-X1-X2)!
i=2

where B( , )= a beta function defined by the parameters in the

parentheses.

6
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Estimation procedures of this complex parametric model are pr vided

in Cheng (1964). However,. Cheng's procedures are far too sophisticated

to be impleMented by practitioners in ed(ktion.. Simplified procedures

(such as the method of moments) ought to be. developed, and also the

applications of the beta-multinomial model in.the'literature-deserves

,

When the beta-multihomial model is generalized to a joint distribution

of scores x and y on'parallel tests, a bivariate beta-multinbmiol distri-
,

bution should result (by mathematical derivation). This biVariate

distribution, denoted by f(x,y), should have the saie set of parameters

as f(x), since x and y are obtained from.parallel tests and identical

criteria should be enforced in both cases. Hence, estimated parameters
,

an in-depth review.

'developed in any'estimation procedure should be sufficient in determining

the bivariate distribution of scores, f(x,y), which would result if

two tests were indeedradministere4. This
G
rationale constitutes a sound

.

basis for developing a single-Odministrat4On approach in assessing

"the reliability of a criterion-referenced test.

Proposed Procedure for,Assessing Reliability based on Beta-Multinomial Model

Two phases: im laied Data; and

Re Data (very difficult to locate)

Simulated.Data. Four steps are necessary :

Step 1=- Vacious values of alphas are considered according to the

specification in Table 1 (page 6).

Step 2-- Specifications On'test length (N) and cutoff scores (C1 and C2)

are included in Table 2 (page 7).

Step 3-- Generate the f(x) and f(x,y) distributioris based on Steps 1 and 2.

Step 4 - -. Develop a single-administration approach to compute P or kappa.

Tentatively,
P=P00 Pll P22 and

Kappa. = 'P - FchanGe,

Pchamcizr.
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Table 1

Selected Beta- Distributions for Study

Case a2 ce3 general description

Uniform

II .5 .5 U-shaped

III 2 2

Symmetric, unimodal
& platykurtic

IV

Symmetric, unimodal

& leptokurtic

V 6 2 Negatively skewed



Table 2

SELECTED VALUES OF N, C1 and C2

N `."' 45%

10

15

20

30

3

(2.25)

5

(4.50)

7

(6.75)

9

(9.0)

14 17 20 23 26 . 29

(13.5) _06.5) .(19.5) (22.5) (25.5) (28.5)

-ci C2

55% 65% 75% 85% 95%
o

3 4 4 5' 5

(2.75) , (3.250, (3.75) (4.25), . (4.75)

6 7 8 9 10

(5.50) (6:50) (7.50) (8.50) (9.50)

9 10 12 '13 15

(8.25) (9.75) (11.25) (12.75) (14.25)

- 11 13 15 17 19

(11.0) (13.0) (15.0) (17.0) (19.0)

t.
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Real Data Analysis . Also four steps are to be executed:,

Step 1-- Estimate 0-4,,c4.z)and°13 via the method of moments. This needs

an in-depth review of the literature).

Step 2-- Giierate the f(x) and f(x,y) distriBution based an Step 1-abbve.

.Step 3-- Compute 1-'and TioTo7a. according to the single-administration proce-c

dure developed in Step 4 under the simulated study.

Step 4-- Compare P against true P'obtained from the test-retest results;

Also, perform the same contrast between and true kappa to

determine whether the beta-multinomial model along with the single

test administration procedure yield satisfactory results.

,



9

-s Preliminary Results Obtained. from Simulated Data
0

In simulating artificial data from the beta-mutipomial model; the

actual criterion scores (Table 2) were never utilized,. Instead, the

proportion of mastered items and that of partially master items were

sufficient.' Figures 2-5 (Pp. 11-14) depict the probability distributions

of trichotomous data simulated from f(x) on page 4. Here, 10% refers'to

the percent of mastered items whereas 70% the partially mastered, items.

Then on page 15, Figure 6.combines various beta functions with 5 distinct

test lengths. The overlay effect shows clearly that the shape of the

compound beta- multinomial distribution ip determined solely by parameters

of the beta functions. The weight coefficient (0, as one might imagine,

would not, affect the probabilistic functions shown on pages 11-15.

When the percentages varied from a (10%, 70%) combination to..a

(30%, 30%) combination, the appearance of beta-multinomial distributions

altered accordingly; although the general shape remained unchanged.

So, where is the beef? Sadly enough; the simulated data based on

theRbeta-multihomial distributions did not depart significantly from

those generated by the beta-binomial. model (see Figures 9-13 for the

univariate cases and Figure 14 for one bivariate case). Perhaps this

was the main reason' why Huynh-preferred therbeta-binomial model even for

cases involving multiple classifications (e.g., Huynh, 1978,

Psychometrika): His preference certainly should not preclule the utility

of beta-multinomial models in the present context. Conceptually, the beta-

multinomial model is well matched with the framework of a multiple.

classification, more so probably than the simple beta-binomial model.

Before committing a fatal error in her conceptualization of the problem,

the author welcomes insights or comments on her proposed methodology.
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